MockSAS: Facilitating
the Evaluation of MAB 1in
SAS

Elvin Alberts llias Gerostathopoulos Tomas Bures
Vrije Universiteit Amsterdam Vrije Universiteit Amsterdam Charles University in Prague

69 vy VU 2o
S2 RESEARCH GROUP X" AMSTERDAM

Self-Adaptive Systems and
Online Learning

Managing System

[Analyze Plan \
online learning
J \

/ Knowledge \

] (
[Monitor J L Execute]
f ¥

Metrics Man ag ed Adapts
System
easures | Affects

Environment

SWIM: Simulator for
Web Infrastructure and Management’

web
browser

client tier data tier
Key
. HTTP data
HTTP load ' D shiaoun Lo database
balancer ;_ HTTP server | | access

"Moreno, Gabriel A., Bradley Schmerl, and David Garlan. "Swim: an exemplar for evaluation and comparison of
self-adaptation approaches for web applications." 2078 SEAMS. IEEE, 2018.

Arms:

A={ay,a.,a.}
Horizon: n, total number of rounds
Context:

Cte[n] — {R(al) R(CL) R(ak)}

Regret:

K
Wn — p; Z E[T;(n)] where p* = max g,
j=1 o

UCB Tuned

https://docs.google.com/file/d/1PsFQBYYZVvLKnN7KYSvsY1cw8T6P0w3y/preview

Problems in Evaluating MAB
Policies

Operating environments are unpredictable, and may contain unknown
unknowns

Statistically significant evaluations cost a lot of time when run on
‘real’ systems

Reproducing system states and extrapolating new ones is tedious
manual work

A reusable and extensible method for more time-efficient evaluation of
MAB policies with SAS

Approach: MockSAS

SAS \
Context Outputs Actions ‘
L ["=---. |
‘ <

utility(system state, system outputs)

el v
Context{... Application REpE | Multi-Armed Bandit |
arms: { arm: UDF || | ;564 to & :ManagingSystem
dist...} construct . e
}... Profile
Trace: ... > :ManagedSystem observed A
utility recorded

for each ‘ e
system output underlying™
process ;
~_known? <

implement directly by user- measure and recreate
defined function through distributions

Result: Evaluation of Multi-Armed Bandit through utility I(—

Determine the system context(s) to
be profiled.

Identify which outputs influence the
calculation of the reward.

Of the identified outputs, determine
which require profiling.

Identify the arms (adaptation
actions) per context whose effects
on the reward should be measured.

For each arm in each context, collect
sufficient values of the profiled
outputs to be able to identify their
distribution.

Example

60Requests {

features: { rg rate: uniform(54,66)}

arms: |

3Servers:
6Servers:
8Servers:

utilitySWIM(rg rate, normal(.064,.009)..

utilitySWIM(rg rate, normal(.039,.001)..
utilitySWIM(rg rate, normal(.039,.001)..

H}
80Requests {
features: {

arms: {

3Servers:
6Servers:
8Servers:

b

rq rate: uniform(72,88) }

utilitySWIM(rg rate, normal(1.68,1.44)..
utilitySWIM(rg rate, normal(.041,.001)..
utilitySWIM(rg rate, normal(.039,.001)..

Trace: (60Requests, 166)

(80Requests, 166)

average reward

(Subset of) Results

0.75 A

0.70 A

0.65 4

0.60 1

0.55 A

0.50 A

policy
—— egreedy-0.2
—— egreedy-0.4
—— egreedy-0.8
—— UCB-TN
=—EXP3-333
—— DUCB-0.92
—— DUCB-0.95
—— DUCB-0.99

o

0 33 66 99 13112 léS 15'38 23Il 2('54 25;7 33IO
rounds elapsed

Mean Median Average Percentage Matching
Policy Name |Reward Reward Ranking SWIM
UCB-TN 0.77 0.76 1.13 86.67%
egreedy-0.2 0.73 0.73 2.03 76.67%
egreedy-0.4 0.69 0.69 3.1 73.33%
DUCB-0.99 0.68 0.68 4.07 23.33%
EXP3-333 0.66 0.66 4.7 26.67%
egreedy-0.8 0.62 0.62 6.47 56.67%
DUCB-0.95 0.62 0.62 6.6 60.00%
DUCB-0.92 0.6 0.6 7.9 0.00%

Looking Ahead

e Comparing more online learning solutions across paradigms
(not just reinforcement learning)

e Applying MockSAS to more SAS.

e Automating the profiling process further through distribution
detection etc.

Code can be found at:
https://qgithub.com/EGAlberts/MockSAS
https://qithub.com/EGAlberts/MASCed_bandits
https://qgithub.com/EGAlberts/swim

https://github.com/EGAlberts/MockSAS
https://github.com/EGAlberts/MASCed_bandits/
https://github.com/EGAlberts/swim

