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"Moreno, Gabriel A., Bradley Schmerl, and David Garlan. "Swim: an exemplar for evaluation and comparison of
self-adaptation approaches for web applications." 2078 SEAMS. IEEE, 2018.



Arms:

A={ay,a.,a.}
Horizon: n, total number of rounds
Context:

Cte[n] — {R(al) R(CL) R(ak)}

Regret:

K
Wn — p; Z E[T;(n)] where p* = max g,
j=1 o

UCB Tuned


https://docs.google.com/file/d/1PsFQBYYZVvLKnN7KYSvsY1cw8T6P0w3y/preview

Problems in Evaluating MAB
Policies

Operating environments are unpredictable, and may contain unknown
unknowns

Statistically significant evaluations cost a lot of time when run on
‘real’ systems

Reproducing system states and extrapolating new ones is tedious
manual work

A reusable and extensible method for more time-efficient evaluation of
MAB policies with SAS



Approach: MockSAS

SAS \
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utility(system state, system outputs)
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defined function through distributions

Result: Evaluation of Multi-Armed Bandit through utility I(—

Determine the system context(s) to
be profiled.

Identify which outputs influence the
calculation of the reward.

Of the identified outputs, determine
which require profiling.

Identify the arms (adaptation
actions) per context whose effects
on the reward should be measured.

For each arm in each context, collect
sufficient values of the profiled
outputs to be able to identify their
distribution.



Example

60Requests {

features: { rg rate: uniform(54,66)}

arms: |

3Servers:
6Servers:
8Servers:

utilitySWIM(rg rate, normal(.064,.009)..

utilitySWIM(rg rate, normal(.039,.001)..
utilitySWIM(rg rate, normal(.039,.001)..

H}
80Requests {
features: {

arms: {

3Servers:
6Servers:
8Servers:

b

rq rate: uniform(72,88) }

utilitySWIM(rg rate, normal(1.68,1.44)..
utilitySWIM(rg rate, normal(.041,.001)..
utilitySWIM(rg rate, normal(.039,.001)..

Trace: (60Requests, 166)

(80Requests, 166)
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Mean Median Average Percentage Matching
Policy Name |Reward Reward Ranking SWIM
UCB-TN 0.77 0.76 1.13 86.67%
egreedy-0.2 0.73 0.73 2.03 76.67%
egreedy-0.4 0.69 0.69 3.1 73.33%
DUCB-0.99 0.68 0.68 4.07 23.33%
EXP3-333 0.66 0.66 4.7 26.67%
egreedy-0.8 0.62 0.62 6.47 56.67%
DUCB-0.95 0.62 0.62 6.6 60.00%
DUCB-0.92 0.6 0.6 7.9 0.00%




Looking Ahead

e Comparing more online learning solutions across paradigms
(not just reinforcement learning)

e Applying MockSAS to more SAS.

e Automating the profiling process further through distribution
detection etc.

Code can be found at:
https://qgithub.com/EGAlberts/MockSAS
https://qithub.com/EGAlberts/MASCed_bandits
https://qgithub.com/EGAlberts/swim



https://github.com/EGAlberts/MockSAS
https://github.com/EGAlberts/MASCed_bandits/
https://github.com/EGAlberts/swim

